At the end of the last century , c . j . yoccoz is made significant contributions to the theory of complex dynamics , one of which is the study of the local connectivity of the julia sets of quadratic polynomials pc ( z ) = z2 + c and the mandelbrot set m . in his work C yoccoz对复动力系统理论作出了重要的贡献,其中之一就是对二次多项式pc ( z ) = z ~ 2 + c的julia集和mandelbrot集m的局部连通性的研究。在他的工作中, yoccoz引进了一种强有力的方法? ?拼图技巧。
2.
Chapter two study iteration of a serial of polynomial , discussed the sufficient and necessary conditions and denseness of the julia set , the relative random dynamical system is constructed by some high degree polynomial . in addition , it discuss the mandelbrot set of a kind of polynomial 本文的第二章主要研究多个函数的特定迭代序列,讨论了高次多项式的随机复动力系统的julia集的连通的充分必要条件以及稠密性问题,同时还讨论了一类多项式函数的mandelbrot集。
3.
In virtue of the knowledge related to fractal theory , all fractals algorithms in the paper have already been realized on computer , such as mandelbrot sets , julia sets , l system and iterated function system , etc . and their fractal figures have been drawn . meanwhile , to obtain a better visual effect and simulate actual natural scene , software adopts the real color and color palette to enrich figures , and color animated cartoon to change them . to show the self - similarity and infinitive tractility of fractal figures , partial zoom has been made on them 本文运用分形理论实现多种分形算法,在计算机上生成mandelbrot集, julia集, l系统, ifs迭代函数系统等典型的分形图形,同时运用真彩色及调色板技术丰富图形的色彩,实现了色彩动画,使其更真实的模拟自然景物;运用鼠标编程技术实现对图形局部的放大和缩小,体现分形图形的自相似性和无限延展性;提供多组参数,利用分形图形的混沌特性,通过微小的参数变化,生成完全不同的分形图形。